
Intro to Workflow management
systems
Brice Letcher & Paul Saary

EMBL-EBI

Workflows

GATK
best
practices:

DNA
Variant
Discovery

https://gatkforums.broadinstitute.org/gatk/discussion/3238/best-practices-for-variant-discovery-in-dnaseq
https://gatkforums.broadinstitute.org/gatk/discussion/3238/best-practices-for-variant-discovery-in-dnaseq
https://gatkforums.broadinstitute.org/gatk/discussion/3238/best-practices-for-variant-discovery-in-dnaseq

Why a tool for workflow management?

We need to handle complicated things like:

● Forking processes: running independent processes simultaneously

● Rejoining processes: combining the output from independent processes once they have completed
● Setting up process environments (eg access to tools, libraries), allocated resources (threads,

RAM), logging to files.
● Creating reports showing, for eg, the time taken by each process.
● Deploying your pipeline on different platforms: Mac/Windows/Linux, different clusters, the cloud.
● Sharing your pipeline: readability & how easy it is to modify.
● Restart your pipeline where it last failed/stopped.

DAG representation

Workflow ⇔ Directed Acyclic Graph (DAG)

Nodes are processes

Edge: Node(A) -> Node(B) means A needs
to complete before B can run.

Graph is acyclic: a process cannot depend
on itself.

What a workflow manager needs to implement

● Declare processes

● Let data flow between processes

● Specify process dependency structure

Popular in bioinformatics :

Snakemake https://snakemake.readthedocs.io/en/stable/

Nextflow https://www.nextflow.io/

https://snakemake.readthedocs.io/en/stable/
https://www.nextflow.io/

Snakemake

Python package which extends the Python language with syntax
specific to workflows

● Processes are called rules

● Data flows between processes via files, always

● Process dependency structure achieved by linking output files of
one rule with input files of another

Rule: Basic syntax

rule sort:
input:

"path/to/dataset.txt"
output:

"dataset.sorted.txt"
shell:

"sort {input} > {output}"

Example from:
http://slides.com/johanneskoester

Each rule is a promise: If I find this
input file, I will make this output
file.

The promise should be fulfilled by
running the shell code.

http://slides.com/johanneskoester

Rules: Wildcards

rule sort:
input:

"path/to/{dataset}.txt"
output:

"{dataset}.sorted.txt"
shell:

"sort {input} > {output}"

Example from:
http://slides.com/johanneskoester

Wildcards allow running a rule on
multiple data.

Can be accessed under `wildcard`
namespace (eg
“{wildcards.dataset}”)

http://slides.com/johanneskoester

Multiple inputs/outputs: access by index

rule sort:
input:

"path/to/{dataset}.txt"
"path/to/annotation.txt"

output:
"{dataset}.sorted.txt"

shell:
"paste <(sort {input[0]}) {input[1]} > {output}"

Example from:
http://slides.com/johanneskoester

http://slides.com/johanneskoester

Multiple inputs/outputs: access by name

rule sort:
input:

a="path/to/{dataset}.txt"
b="path/to/annotation.txt"

output:
b ="{dataset}.sorted.txt"

shell:
"paste <(sort {input.a}) {input.b} > {output}"

Example from:
http://slides.com/johanneskoester

It might be easier to name your
inputs and outputs.

This way you can keep better track
of what is happening.

http://slides.com/johanneskoester

Rules: Run python code

rule sort:
input:

a="path/to/{dataset}.txt"
output:

b ="{dataset}.sorted.txt"
run:

with open(output.b, “w”) as out:
for l in sorted(open(input.a)):

print(l, file=out)

Example from:
http://slides.com/johanneskoester

Instead of running bash code you
can also use Python directly inside
the rule’s run block.

http://slides.com/johanneskoester

Rules: Execute a script

rule sort:
input:

a="path/to/{dataset}.txt"
output:

b ="{dataset}.sorted.txt"
script:

"scripts/myScript.R"

Example from:
http://slides.com/johanneskoester

If you give a rule a script to execute, you can access
snakemake-related environment variables (eg
wildcards) from inside the script.

Python:
outputfile = snakemake.output[‘b’]

R:
outputfile <- snakemake@output$b

http://slides.com/johanneskoester

Snakemake is ‘output-oriented’:

rule all:
input:

[f“final_outputs/{i}.txt for i in range(4)”]

First rule usually specifies the final
output and is called `all`

It looks for what the workflow end product is,
and works backwards from there.

Working workflow

DATASETS = ["D1", "D2", "D3"] # Native python array

rule all:
input:
 expand("{dataset}.sorted.txt", dataset=DATASETS)

rule sort:
input:

 "path/to/{dataset}.txt"
output:
 "{dataset}.sorted.txt"
shell:

"sort {input} > {output}”

Example from:
http://slides.com/johanneskoester

http://slides.com/johanneskoester

Snakefile execution
execute the workflow with target D1.sorted.txt
snakemake D1.sorted.txt

execute the workflow without target: first rule defines target
snakemake

dry-run
snakemake -n

dry-run, print shell commands
snakemake -n -p

dry-run, print execution reason for each job
snakemake -n -r

Examples from:
http://slides.com/johanneskoester

http://slides.com/johanneskoester

Mental map
How you write: a leads to b which leads to c

→ Write out the DAG before writing the workflow

How Snakemake reads: c needs b’s output to run which needs a’s output to run

→ Guides writing your rules and debugging

Workflows

GATK best
practices:

Snakemake
implementati
on

https://github.com/snakemake-workflows/dna-seq-gatk-variant-calling
https://github.com/snakemake-workflows/dna-seq-gatk-variant-calling
https://github.com/snakemake-workflows/dna-seq-gatk-variant-calling

What’s next?

The rest of this workshop is on the webpage:

https://bricoletc.github.io/WMS_teaching

https://bricoletc.github.io/WMS_teaching

